Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

NIMCET Previous Year Questions (PYQs)

NIMCET Trigonometry PYQ


NIMCET PYQ
The expression  $\frac{tanA}{1-cotA}+\frac{cotA}{1-tanA}$ can be written as 





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2020 PYQ

Solution
















NIMCET PYQ
Angle of elevation of the top of the tower from 3 points (collinear) A, B and C on a road leading to the foot of the tower are 30°, 45° and 60°, respectively. The ratio of AB and BC is





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2020 PYQ

Solution

According to the given information, the figure should be as follows.  
Let the height of tower = h



NIMCET PYQ
If $3 sin x + 4 cos x = 5$, then $6tan\frac{x}{2}-9tan^2\frac{x}{2}$ 





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2020 PYQ

Solution


NIMCET PYQ
Largest value of $cos^2\theta -6sin\theta cos\theta+3sin^2\theta+2 $ is





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2023 PYQ

Solution


NIMCET PYQ
Number of point of which f(x) is not differentiable $f(x)=|cosx|+3$ in $[-\pi, \pi]$





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2023 PYQ

Solution


NIMCET PYQ
If A > 0, B > 0 and A + B = $\frac{\pi}{6}$ , then the minimum value of $tanA + tanB$





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2019 PYQ

Solution

On differentiating 
x= tanA + tan(π/6-A) 
we get : 
dx/dA = sec²A-sec²(π/6-A) 
now putting 
dx/dA=0 
we get 
cos²(A) = cos²(π/6-A) so 0≤A≤π/6 
therefore 
A=π/6-A from here we get A = π/12 = B 
so minimum value of that function is 
2tanπ/12 which is equal to 2(2-√3)

NIMCET PYQ
The $sin^2 x tanx + cos^2 x cot x-sin2x=1+tanx+cotx $, $x \in (0 , \pi)$, then x





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2019 PYQ

Solution


NIMCET PYQ
If $cosec\theta-\cot \theta=2$, then the value of $cosec\theta$ is





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2022 PYQ

Solution


NIMCET PYQ
The solution of the equation ${4\cos }^2x+6{\sin }^2x=5$ are





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2022 PYQ

Solution


NIMCET PYQ
The value of $\tan \Bigg{(}\frac{\pi}{4}+\theta\Bigg{)}\tan \Bigg{(}\frac{3\pi}{4}+\theta\Bigg{)}$ is





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2024 PYQ

Solution


NIMCET PYQ
If $\sin x=\sin y$ and $\cos x=\cos y$, then the value of x-y is





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2024 PYQ

Solution


NIMCET PYQ
If $a_1, a_2, a_3,...a_n$, are in Arithmetic Progression with common difference d, then the sum $(sind) (cosec a_1 . cosec a_2+cosec a_2.cosec a_2+...+cosec a_{n-1}.cosec a_n)$ is equal to





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2022 PYQ

Solution


NIMCET PYQ
In a ΔABC, if $\tan ^2\frac{A}{2}+\tan ^2\frac{B}{2}+\tan ^2\frac{C}{2}=k$ , then k is always





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2021 PYQ

Solution


NIMCET PYQ
The general value of $\theta$, satisfying the equation $\sin \theta=\frac{-1}{2},\, \tan \theta=\frac{1}{\sqrt[]{3}}$





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2021 PYQ

Solution


NIMCET PYQ
If  then the value of  is





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2018 PYQ

Solution


NIMCET PYQ
If tan x = - 3/4 and 3π/2 < x < 2π, then the value of sin2x is





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2017 PYQ

Solution



NIMCET PYQ
The value of $\tan 9{^{\circ}}-\tan 27{^{\circ}}-\tan 63{^{\circ}}+\tan 81{^{\circ}}$ is equal to





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2021 PYQ

Solution


NIMCET PYQ
If cosθ = 4/5 and cosϕ = 12/13, θ and ϕ both in the fourth quadrant, the value of cos( θ + ϕ )is





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2017 PYQ

Solution



NIMCET PYQ
Express (cos 5x – cos7x) as a product of sines or cosines or sines and cosines,





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2017 PYQ

Solution


NIMCET PYQ
If $32\, \tan ^8\theta=2\cos ^2\alpha-3\cos \alpha$ and $3\, \cos \, 2\theta=1$, then the general value of $\alpha$ =





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2021 PYQ

Solution


NIMCET PYQ
If |k|=5 and 0° ≤ θ ≤ 360°, then the number of distinct solutions of 3cos⁡θ + 4sin⁡θ = k is
NIMCET 2021





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2021 PYQ

Solution



NIMCET PYQ
If $a\, \cos \theta+b\, \sin \, \theta=2$ and $a\, \sin \, \theta-b\, \cos \, \theta=3$ , then ${a}^{2^{}}+{b}^2=$





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2021 PYQ

Solution


NIMCET PYQ
If $\prod ^n_{i=1}\tan ({{\alpha}}_i)=1\, \forall{{\alpha}}_i\, \in\Bigg{[}0,\, \frac{\pi}{2}\Bigg{]}$ where i=1,2,3,...,n. Then maximum value of $\prod ^n_{i=1}\sin ({{\alpha}}_i)$.





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2023 PYQ

Solution


NIMCET PYQ
Solve the equation sin2 x - sinx - 2 = 0 for for x on the interval 0 ≤ x < 2π





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2020 PYQ

Solution


NIMCET PYQ
If $\frac{tanx}{2}=\frac{tanx}{3}=\frac{tanx}{5}$ and x + y + z = π, then the value of tan2x + tan2y + tan2z is





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2020 PYQ

Solution


NIMCET PYQ
Find the value of sin 12°sin 48°sin 54°





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2020 PYQ

Solution


NIMCET PYQ
If cos x = tan y , cot y = tan z and cot z = tan x, then sinx =





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2020 PYQ

Solution


NIMCET PYQ
The value of  is





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2020 PYQ

Solution









NIMCET PYQ
The value of sin 10°sin 50°sin 70° is





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2020 PYQ

Solution

sin10° sin50° sin70°
= sin10° sin(60°−10°) sin(60°+10°)
= 1/4 sin3x10°
=1/4x1/2=1/8


NIMCET


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

NIMCET


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...